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Oscillating convection is studie4 in a layer of viscous incompressible liquid which is 
in a high-frequency vibration field. Analysis is carried out on the basis of averaged 
Boussinesq equations obtained in [i, 2]. Cases are considered of total weightlessness and 
low gravitation. 

Secondary regimes are studied numerically which arise in the vicinity of the critical 
Reyleigh number. Types of loss of stability are studied, i.e., soft or hard in relation to 
direction and the vibration velocity. Smooth and rapid velocity and temperature components 
are calculated which are used in working out average characteristics of heat transfer and 
kinetic energy. It appears that with different vibration directions loss of stability may 
lead to both an increase and to a reduction in energy. It is found that with all of the 
vibration directions the average Nusselt number increases with an increase in supercriticality. 
In the case of reduced gravitation values of the oscillation parameter are found with which 
there is emergence into weightlessness. 

I. The problem of the effect of vertical high-frequency oscillations on the occurrence 
of convection in a nonisothermal liquid is studied in [i] where an averaging method of the 
Kapitsa form is used in convection equations in a Boussinesq approximation. By separating 
movement into smooth and oscillating parts a closed set of equations is derived in [i] for 
averaged velocity and temperature fields; the "rapid" component is expressed explicitly in 
terms of the "slow" component. Convection is characterized by three dimensionless parameters: 
Prandtl Pr = ~/X and Rayleigh R = (T l - T2)$gs ~) numbers, and a vibration analog of the 
Rayleigh number p = (T l - T2)2~2a2s In [i, 3] it is established that by means of 
vertical oscillations it is possible to provide convection immediately for all R. It follows 
from the results of [3] that convection in weightlessness does not arise with vertical os- 
cillations. Starting from [i], the averaging method is used in a whole series of works in 
studying convection in a high-frequency vibration field. It is noted that the method was 
first applied to equations in partial derivatives by V. N. Chelomei in studying the dynamic 
stability of elastic systems under the action of vibration. A rigorous mathematical sub- 
stantiation of the averaging method is given in [4, 5] for some classes of infinite dissipa- 
tive systems, and in particular for the problem of convection with vertical oscillations. 
This makes it possible to study the asymptotic stability of periodic solutions of the origi- 
nal problem on the basis of analyzing the averaged solutions. 

The case is considered in [2, 6] of vibration of an arbitrary direction: averaged equa- 
tions are derived and gravitational convection is studied. It is shown tht for any vibra- 
tion direction, excluding the vertical, convection may arise both with heating from below and 
with heating from above. In [7, 8] averaged equations from [2] were analyzed in the interest 
of a special case of convection in weightlessness, conditions are indicated for existence of 
an equilibrium condition, and some examples are given. Relationships are given between criti- 
cal values of parameters assuming that instability is monotonic. The case of a binary mix- 
ture is studied in [9, i0]. It is found that in a layer of two-component liquid convection 
in weightlessness also arises with transverse oscillations. Comparison of numerical results 
[11-13] with asymptotic results from [9, i0, 14] makes it possible to estimate the value of 
frequency starting from which the averaging method is effective. 

A review of work on oscillating convection in weightlessness may be found in [15]. Only 
those works are mentioned above which are connected with the method of averaging. The main 
results for application and substantiation of this method in the problem of thermal oscilla- 
ting convection are given in [16, 17]. Experimental proof is obtained in [18] for the effects 
of high-frequency vibration in studying convective instability. 
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2. We consider a plane horizontal layer (--I/2 <~ z <~ I/2, --oo < x < +oo) of viscous incom- 
pressible liquid at whose boundaries temperature is prescribed. The layer as a single unit 
performs harmonic oscillation along an axis with a unit vector s = (cos 9, sin ~), where angle 
is read from the direction along the layer. It is assumed that oscillation frequency to is 
high (w § ~), and the amplitude a/w is low. In a coordinate system connected with the oscil- 
lating layer convection equations in the Boussinesq approximation have the form 

ov 
~;t + (v, V) v = ! Vp + vAv - -  0 (g + a(0 cos ors) T, 

P 

8T/Ot q- (v, V T) : :  EAT, div v - 0, ( 2 . 1 )  

v ~ O w i t h Z  = +__1/2, T = I'1 w i t h Z  ~ - - l / 2 ,  T = I"2 wi thz  = l / 2 .  

here g = (0, -g); g is free fall acceleration; v is relative velocity of liquid movement; T, 
p are temperature and density; ~, X, B are coefficients of kinematic viscosity, thermal dif- 
fusivity, and thermal expansion. 

Problem (2.1) has a 2s/w-periodic solution with respect to time 

v o = (Vox (z, t), 0), T o = - - C  z - ~ B ,  ( 2 . 2 )  

Po = P~ (g - -  ao  cos mt sin 9) - -  2 + B z  + const, 

where 

c : (T1 - G)/z,  B := (?'~ + 7~)/2, 

%~@, t) = FI@) sin ot  q- ~@)  cos ot, 

F I~)  = A l c h  o l z s i n o l z +  B l s h  o tzc0s  otz  ~ - C a ~ c o s ~ z ,  

F ~ )  =- Al s h o t  z cos o~z - -  B1 ch ol z s in olz, 

B1 = 2 (ch z (o.tl/2) sin ~ (or//2) + sh 2 (o//2) c,,s 2 (%//2)) ' 

ch ((0,~/z) sin (0~//2) 
Aj = B, sh (%U2) cos (%l/2) ' (01 = V (0/(2v). 

The s o l u t i o n  o b t a i n e d  h a s  an  u n e v e n  v e l o c i t y  p r o f i l e  w i t h  r e s p e c t  t o  z t y p i c a l  f o r  l a y e r s  o f  
m i x i n g .  W i t h  a b s e n c e  o f  v i b r a t i o n  ( a  = 0)  o r  w i t h  v e r t i c a l  v i b r a t i o n s  (9  = v / 2 )  t h i s  s o l u -  
t i o n  c o r r e s p o n d s  t o  t h e  a s s u m p t i o n  o f  m e c h a n i c a l  e q u i l i b r i u m .  I t  f o l l o w s  f rom ( 2 . 2 )  t h a t  
w i t h  y ~ w/2 and  w i t h  e x i s t e n c e  o f  a t e m p e r a t u r e  d i f f e r e n c e  a t  t h e  b o u n d a r i e s  m e c h a n i c a l  
equilibrium is impossible. 

The averaging method makes it possible to study the stability of periodic solution (2.2) 
with a study of the stability of the average 2~/m stationary solution with respect to a time 
interval satisfying the set of averaged equations. 

In order to derive this set we investigate the solution of v, T, p in the form 

v := u +-~,  T = : ~  q - q ,  p = q  d - 8 ,  ( 2 . 3 )  

where u, x ,  q are slow components, and ~, q, 6 are rapid components depending on rapid time 
wt. In the time interval 2~/m rapid components have a zero average, and slow components are 
assumed to be stationary. Functions ~, N are expressed [i] in terms of slow components: 

= - -  a~ s i ,  or,v, ~l = - -  ~ cos ~t (w, V~) ( 2 . 4 )  
O 

(w ~ I I ~ )  is an orthoprojector in L2for a subspace of solenoidal vectors with a normal com- 
ponent w nequal to zero at the boundary). By substituting (2.3) in (2.1) and averaging with 
respect to explicitly contained time we obtain [2, 6] a closed dynamic set for an averaged 
hydrodynamic field: 

a-2% s (s (w, W) - -  (w, V) w), ~t + (u, V) u = - -  ! Vq ~- ~;Au - -  ~g~ + -~ -  
o 

A w  = - - r o t  rot  ('rs), d i v  u = 0,  0x/0t  q- (u, Wc) = l A x ,  ( 2 . 5 )  

T = T~with z =- --I /2,  T = T ~ w i t h z  ==I/2, u =-0 ,  w,~ - - 0  

with z ---- +I /2 .  
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Problem (2.5) has an accurate stationary solution: 

u o = 0, % = - - C z  q- B, w o -= ( - - C z c o s  ~ ,  0),  qo = P~g( -Cz~/'2 + Bz) ~ co ,mr .  (2.6) 

It is easy ot see that the solution of %, ~0, q0 is an average solution with respect to 
period 2~/m from (2.2) and solution (2.3)(vo, To, P0) corresponding to it gives the main 
part of the periodic solution (2.2) without taking account of functions of the boundary layer 
type which appear in (2.2) with m § =. We find the secondary solution of problem (2.5) dis- 
tinct from (2.6) in the form 

We substitute (2.7) in ( 2 . 5 )  
function ~(x, z, t) and ~(x, 
unknowns ~, ~, T we obtain a 

a a ~  

at ~- 

= K ( ~ ,  A ~ )  + V ~ K ( q ) ,  T ) s i u  ? - -  ~ K((I) ,  7 ' ) cos ,  ! ' q-. K((I) ,  Aq))  , 

- -  P r ~  + A T - -  or _ K ( ? ,  7'),  ~q )  ~6" F ~7" (~z _ - -  ~ . ~  c.o~ (1 . . . . . .  ~;:c st." q:, = (), 

"t]) = ?)q;."OZ =- 7' q) .. 11 with z : : f ' ! / 2 ,  

u - - u o - l - v l ,  * .... % +  L w = w  o - l - w ~ .  ( 2 . 7 )  

, we  m o v e  t o  d i m e n s i o n l e s s  v a r i a b l e s ,  a n d  w e  i n t r o d u c e  a f l o w  

z, t) so that v~ = (&~"Oz, --L/~l~.'t):r), w~ = (O(D/&, --afD/ax). For the 
nonlinear problem 

aT (aT 0"(I) . a-'q:) cos  tf~ : 
/ 

(2.8)  

where A = O~/Ox~ - a~/az ~, and operator K acts on arbitrary smooth functions u and v according 
to the rule 

K (t~, @ -- az a~: ,J.,: ,z" 

Problem (2.8) is characterized by four dimensionless parameters: Pr----v/X; R := ]JgU~/(%v); tl 
a~zC~l~/(2%v) (q, is angle determining the vibration direction). 

3. To problem (2.8) we apply the Lyapunov-Shmidt method developed for the problem of 
hydrodynamics, and in particular for the Yudovich convection problem [19, 20]. We consider 
the stationary linearized problem corresponding to (2.8): 

A~ ~ __ ]~ aT /(~I '  ,~ i / r  . ( /q~ '~ 

ar ,T  ~i~ q~ = O, ( 3 .  I )  AT' aq~ O, A ( D - - 7 :  cos  ~ + ,.--; O,g 

aq: T =(D-- 0 with z= 4-  I r) ? = ~T = - -  ' "  

When there is no vibration (~ = 0) it is shown in [20] that in the vicinity of funda- 
mental number R, of problem (3.1) there is loss of equilibrium stability and with an accuracy 
up to shear along the layer a single stationary 2~/~-periodic secondary solution of problem 
(2.8) with respect to x arises which depends analytically on parameter s = /R- R,. These 
results are based on the simplicity of the fundamental number and invariance of the problem 
in relation to some group of transformations (for numerical solutions see [21]). 

Nonlinear problem (2.8) is invariant with respect to groups of shears along the layer 
Ih(U(x, z)) = U(x + h, z) and transformation of the inversion L(U(x, z)) ~ ~(--x, --z), --T(--r, 
-z), ~(--x, --z)), where U(x, z)-:: ~(x, z), T(x, z), ~(x, z)). Let ~, be the fundamental number of prob- 
lem (3.1) with fixed Pr, R, ~, a. The simplicity of ~, is shown in [I0] for T = 0, R = 0, 
and in the rest of the cases it was verified numerically. The stationary 2~/~-periodic solu- 
tion of problem (2.8) with respect to x with B = B, + 61c 2 is found in the form of a Lyapunov- 
Shmidt series 

If a solution of (3.2) exists with 
< ~,, then 5 i = -i (hard loss of 

detail in [22] we obtain 

B > P,, then 5z = 1 (soft loss of stability), and if with 
stability). By using the calculation procedure given in 

o ~  0%, o% 8 ~  + 0 (~'~), 
+ s - p l  - - ~ F '  - -  @1 ~,--7- - -  ~ /  

2 2 3  



TABLE 1 
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oo 
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10 
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2tt7,3 
2t23,0 
2t24,9 
2f28,7 

2223,7 
2229,9 
2231,9 
2236,0 

2597,5 
2605,2 
2607,8 
2613,0 

3476,0 
3487,8 
349t ,8 
3499,7 

570{;,9 
5730,2 
5753,7 

12758,5 
12818,8 
12879,3 

40728,1 
40922,2 
41116,9 

2H752,5 
212727,8 
213705,5 

3452064,t 
346752~ ,t 
34830t2,6 

3,2262 
3,2265 
3,2266 
3,2260 

3,208t 
3,2085 
3,2091 
3,2083 

3,1458 
3,1460 
3,1460 
3,t462 

3,/}0~ 3 
3,0011 
3,{}041 
3,0o08 

2,(;67t 
2,6579 
2,6562 

1,9836 
1,9805 
t ,9792 

1,2992 
1,2976 
t,2962 

0,786-] 
0,7852 
0,7844 

0,3726 
0,3722 
0,37~9 

0,5736 
0,5698 
0,5685 
0,566t 

--0,330t 
--0,3306 
--0,3288 
--0,3329 
--0,0348 
--0,0,%3 

0,0342 
- 0,0839 

.... 0,00667 

.... 0,0(}663 
-0,00649 

--0,0065{) 

- 0,0(~1.86 
.... (1,(}()2()4 
-.0,00205 

.... 0,00809 
-0,0o827 
..... 0,00833 

-.0,05] 28 
.... 0,05120 
.... 0,05098 

- -0,~ 006 
(},t0(}6 

- -0,1006 

- -0,0t95 
--0,0t .94 
.... 0,0193 

0,5t10 
0,5091 
0,5084 
0,507t 

0,3072 
0,3086 
0,3073 
0,31t6 

0,037t 
0,0368 
0,0367 
0,0364 

(},(}0909 
0,00907 
0,00890 
0,00905 

0.003(-17 
(t,0040~ 
0,00405 
0,0243 
0,0249 
0,025t 

0,25t2 
0,2515 
0,2512 

1,03~4 
t .(}343 
1,037t 

(),7117I 
0,7(;59 
O,7647 

---30,376 
--30,403 
--30,4tl  
--30,423 

2-18,328 
--18,500 
--18,453 
--t8,767 

--2,237 
- 2,228 
- 2,227 
- 2,219 

0,5552 
-0,5569 
- 0,5479 
- -0,5588 

-0,2165 
0,2379 
0,242~ 

-- -0,9740 
�9 �9 t,0105 
- 1,0359 

3.5(;09 
3,3575 
3J4~5 

~7~ .40 
t70,~)7 
168,7l 

75(1,41 
74~ ,(if) 
737,69 

O<P o " Oq} n ., 3u, \ 
w = - -  z cos  q~ + 8 ~  ~ + 8 ~ i  a~'2~ - - + o 

= - -  z + B/C + 8~jT o + ~:-Dg%~, + 0 (~:3). ( 3 . 3 )  

The f u n c t i o n s  ~0(x, z), To(x , z), (D0(x, z), w21(x, z), wzz(x, z), u,23(x, z), and a l s o  c o e f f i c i e n t  8z a r e  e x -  
p r e s s e d  by  s o l u t i o n s  o f  l i n e a r  b o u n d a r y  p r o b l e m s  Which  a r i s e  i n  r e a l i z i n g  t h e  L y a p u n o v - S b m i d t  
m e t h o d  [ 2 2 ] .  

1 /  ./2~ V~.) '"~ % t - -  
�9 032 

(~2  = ~ s  i s  d i m e n s i o n l e s s  v i b r a t i o n  f r e q u e n c y ) .  

Solution (2.3) is used for calculating the intensity of transverse heat transfer (average 
Nusselt number <Nu>) and average kinetic energy ((][vl12>) which in the vicinity of ~, are cal- 

culated by the equations 

2~/~ 
a ~ OT 

<NU> ~ 2n # ~-z z=-ll~ dx  = ] + Cigi + O(ea); (3.4) 
0 

2 n / o  2 2 n t ~  0,5 

Y ; Y l  I ~ a~ w sin r 12 < ]1 v Ii~> = 4---~ u - -  t /  "dz dx dt la, cos" q) (1 + 8~) + C.zeh + 0 (e 3) ( 3 . 5  ) 

0 0 - - 0 , 5  

(e, : e~,H,"l ~ IV -- ~,[~[~,~ is relative supercriticality). Expressions for C i and C 2 are given in 
[22] and C l = C 2 = 0 if ~ < ~,, 61 = 1 and if ~ >~,, 61 =-i- The first term in (3.5) character- 
izes the contribution to kinetic energy of the rapid component ($0 = -r w0 sin~2t) of 

the main solution, and the second characterizes the contribution of addition terms (v~, ~i = 

- - V " 2 ~ / P r w ,  sino)~t)i of the secondary flow velocity vector. 

4. We give the main results of calculating with low gravitation (g § O) and pure weight- 
lessness (g = 0). It is noted that the assertion of high-frequency vibration with g ~ 0 is 
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TABLE 2 

u,~ o~ 61~ i C1 C2 

6,26 
6,28 

58,7 
58,75 

59,2 
59,4 

2i69,8 
2t70,i 

34 588 
34 8t4 

36 934 
37 928 

3,2i92 
3,2t9i 

L3743 
i,37i2 

i,3439 
i,33t8 

0,19834 
--0,t5141 

--0,90t67.t0 -s 
0,t1503.t0-1 

0,t9987.10 -4 
--0,I0243.10-4 

180,74 
137,98 

4,1273 
5,2801 

0~09407 
0,04879 

--i0860 
--8291,0 

I0,634 
155,09 

0,58892 
0,37947 

described conveniently by parameter r =: ]/'~/R~:aV~/(]/2gl ~) which does not depend on tem- 
perature and it characterizes the ratio of vibration and gravitation forces. Thus, it ap- 
pears [i, 16, 18] that in the case of vertical oscillations with r > 0.023 gravitation con- 
vection cannot arise with any temperature gradient. 

In this work with fixed values of parameters r, % Pr we calculate ~%(~,) : m i . ~ ( ~ ) ,  

amplitudes ~z of secondary solutions, and also C l and C 2 in (3.4) and (3.5) for <Nu> and 
the averaged square of the velocity norm (][vl]~> are calculated. It is noted that for flow 
function 90(x, z) the normalization ~0(0, 0) = 4 is taken. 

From the results given in Table 1 it follows that a value of vibration parameter r.,. 
(r, z i0) exists such that with r > r, all of the movement characteristics calculated (~[, 
(Nu>, (![vlI~>) correspond to the case of pure weightlessness. This makes it possible to select 
a vibration velocity with which terrestial modeling of weightlessness conditions is possible. 

Presented in Fig. 1 is the dependence of the square of amplitude 6~((p) for Pr = 1 and 
a = a,. With vibration directions 0<(p< 6.26 ~ and 58.75~ 59.2 ~ secondary flow exists 
with supercritical branching ~ (6 z = i), and with 6.28~ 58.7 ~ and ~> 59.4 ~ branching 
is subcritical (61 = -i); in the range 27~ ~ secondary flow velocity is at a minimum 
( ~  z 10-6). 

Shown in Fig. 2 is the dependence of the square of amplitude on Pr for some values of 
~(0; 5; 8; i0'>). With vibration directions close to longitudinal (~ z 0) there is a region of 
supercritical branching which decreases with an incresae in ~; with {p~8 ~ branching is only 
subcritical. In addition, calculations showed that starting from Pr = 50 amplitude $, does 
not depend on Pr. 

According to (3.4) and (3.5) in the small vicinity of ~,, <Nu>, and (llvll~> depend lin- 
early on the relative supereriticality of ~,: : [I~--~%I/N,. It can be seen from Fig. 3a that 
heat transfer increases with an increase in supercriticality (C l > 0), and the rate of growth 
of C I depends markedly on vibration direction. 
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Presented in Fig. 3b are curves for C~(~). With ~ = 58.3 ~ coefficient C 2 changes sign, 
i.e., occurrence of secondary flow may reduce kinetic energy ( 0 ~  58.2~ but it may also 
increase (~p~ 58.4 ~ ) which apparently makes it possible to control convection by means of a 
specially selected vibration direction. 

Given in Table 2 are the results of calculations in the vicinity of values of % with 
which there is a change in the nature of branching: with 6.26~ ~ 6.28 ~ and 58.7~ ~ 
58.75 ~ there is a strong increase in 8~, Cl, and C2; in the section 59.2 ~ ~ 59.7 ~ ampli- 
tude 8~ revert to zero, and C l and C 2 change weakly. 

The authors thank V. I. Yudovich for constant attention to the work. 
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