THERMAL OSCILIATION CONVECTION IN A LAYER OF LIQUID WITH
WEIGHTLESSNESS OR REDUCED GRAVITATION

S. M. Zen'kovskaya and S. N. Ovchinnikova UDC 536.25

Oscillating convection is studied in a layer of viscous incompressible liquid which is
in a high-frequency vibration field. Analysis is carried out on the basis of averaged
Boussinesq equations obtained in [1, 2]. Cases are considered of total weightlessness and
low gravitation.

Secondary regimes are studied numerically which arise in the vicinity of the critical
Reyleigh number. Types of loss of stability are studied, i.e., soft or hard in relation to
direction and the vibration velocity. Smooth and rapid velocity and temperature components
are calculated which are used in working out average characteristics of heat transfer and
kinetic energy. It appears that with different vibration directions loss of stability may
lead to both an increase and to a reduction in energy. It is found that with all of the
vibration directions the average Nusselt number increases with an increase in supercriticality.
In the case of reduced gravitation values of the oscillation parameter are found with which
there is emergence into weightlessness.

1. The problem of the effect of vertical high-frequency oscillations on the occurrence
of convection in a nonisothermal liquid is studied in [1] where an averaging method of the
Kapitsa form is used in convection equations in a Boussinesq approximation. By separating
movement into smooth and oscillating parts a closed set of equations is derived in [1] for
averaged velocity and temperature fields; the "rapid"” component is expressed explicitly in
terms of the "slow'" component. Convection is characterized by three dimensionless parameters:
Prandtl Pr = v/x and Rayleigh R = (T, — T,)Bge®/(xv) numbers, and a vibration analog of the
Rayleigh number y = (T, — T,)?p?a?2?/(2vx). 1In [1, 3] it is established that by means of
vertical oscillations it is possible to provide convection immediately for all R. It follows
from the results of [3] that convection in weightlessness does not arise with vertical os-
cillations. Starting from [1], the averaging method is used in a whole series of works in
studying convection in a high-frequency vibration field. It is noted that the method was
first applied to equations in partial derivatives by V. N. Chelomei in studying the dynamic
stability of elastic systems under the action of vibration. A rigorous mathematical sub-
stantiation of the averaging method is given in [4, 5] for some classes of infinite dissipa-
tive systems, and in particular for the problem of convection with vertical oscillations.
This makes it possible to study the asymptotic stability of periodic solutions of the origi-
nal problem on the basis of analyzing the averaged solutions.

The case is considered in [2, 6] of vibration of an arbitrary direction: averaged equa-
tions are derived and gravitational convection is studied. It is shown tht for any vibra-
tion direction, excluding the vertical, convection may arise both with heating from below and
with heating from above. In [7, 8] averaged equations from [2] were analyzed in the interest
of a special case of convection in weightlessness, conditions are indicated for existence of
an equilibrium condition, and some examples are given. Relationships are given between criti-
cal values of parameters assuming that instability is monotonic, The case of a binary mix-
ture is studied in [9, 10]. It is found that in a layer of two-component liquid convection
in weightlessness also arises with transverse oscillations. Comparison of numerical results
[11-13] with asymptotic results from [9, 10, 14] makes it possible to estimate the value of
frequency starting from which the averaging method is effective.

A review of work on oscillating convection in weightlessness may be found in [15]. Only
those works are mentioned above which are connected with the method of averaging. The main
results for application and substantiation of this method in the problem of thermal oscilla-
ting convection are given in [16, 17]. Experimental proof is obtained in [18] for the effects
of high-frequency vibration in studying convective instability.
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2. We consider a plane horizontal layer (—1/2 <<z < l/2, —o0 << ¥ <C +0) of viscous incom-
pressible liquid at whose boundaries temperature is prescribed. The layer as a single unit
performs harmonic oscillation along an axis with a unit vector s = (cos ¢, sin ), where angle @
is read from the direction along the layer. It is assumed that oscillation frequency w is
high (w > «), and the amplitude a/w is low. In a coordinate system connected with the oscil-
lating layer convection equations in the Boussinesq approximation have the form

)
%4—(\7, V)v=_%-Vp+vAv-—{3(g + awcos wis) T,
oT/ot + (v, yT) = AT, div v = 0, (2.1)
vV =0withz = 41/2, T = T; withz = —1/2, T = T, withz = /2.

here g = (0, —g); g is free fall acceleration; v is relative velocity of liquid movement; T,
p are temperature and density; v, x, B are coefficients of kinematic viscosity, thermal dif-
fusivity, and thermal expansion.

Problem (2.1) has a 2m/w-periodic solution with respect to time

Vo == Wy (5 8), 0), T, = —Cz -+ B, (2.2)

Py = pP (g — aw cos wi sin ¢) (-— —(;i + Bz) + const,

where
C = (I = T/l B = (I, + T2,
V{2, ) = F((3) sin wi 4 F,(z) cos of,
Fi(z) = Ay ch oz sin g,z + By sh o2 cos wz - Caf cos ¢z,
Fi(z) == A; sh @ 2z cos 9z — By c¢h @, zsin oz,
Caf cos @ sh (mll/Z) cos (mll/i%)
2 (ch2 ((oll/Z) sin? (©,1/2) 1 gn? (@42 cos? (wll,f’Z)) !
4 —B ch ( 1/2) sin (0,1/2)
1 b shi(0,8/2) cos (v,0/2)°

Blz

W = Vo)/( AYR

The solution obtained has an uneven velocity profile with respect to z typical for layers of
mixing. With absence of vibration {(a = 0) or with vertical vibrations (¥ = w/2) this solu-
tion corresponds to the assumption of mechanical equilibrium. It follows from (2.2) that
with ¢ # 7/2 and with existence of a temperature difference at the boundaries mechanical
equilibrium is impossible.

The averaging method makes it possible to study the stability of periodic solution (2.2)

with a study of the stability of the average 2m/w stationary solution with respect to a time
interval satisfying the set of averaged equations.

In order to derive this set we investigate the solution of v, T, p in the form
vezu 4§ T=t-49, p=4¢g -8, (2.3)

where u, T, q are slow components, and § n, § are rapid components depending on rapid time
wt. In the time interval 2m/w rapid components have a zero average, and slow components are
assumed to be stationary. Functions & n are expressed [1] in terms of slow components:

E= —afsinotw, 1= — %cos ot (w, V1) (2.4)
(w = II(st) is an orthoprojector in L, for a subspace of solenocidal vectors with a normal com-
ponent whequal to zero at the boundary). By substituting (2.3) in (2.1) and averaging with
respect to explicitly contained time we obtain [2, 6] a closed dynamic set for an averaged
hydrodynamic field:

aalt + (u, Vyu=— %Vq + vAu — fgr + a.f (s (w, Vi) — (W, V)W),
Aw = —rot rot ('T,‘S), div u = 01 617/8“‘ + (ll, VT) = XAT, (2.5)
T:leithz:__l/g’T_—:TZWithz::l/?,,u::-‘O, W, =

vith z = +1/2.
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Problem (2.5) has an accurate stationary solution:
u, =0, 5 =—Cz+ B, w, = (—Czcos ¢, 0), q, = ppg{—Cz%2 + Bz) + const. (2.6)

It is easy ot see that the solution of uw,, 1t,, g, is an average solution with respect to
period 2m/w from (2.2) and solution (2.3) (vy, T,, p,) corresponding to it gives the main
part of the periodic solution (2.2) without taking account of functions of the boundary layer
type which appear in (2.2) with w > ». We find the secondary solution of problem (2.5) dis-
tinct from (2.6) in the form

U=y vy, T=1 -+ T, W= Wy i Wy (2.7)

We substitute (2.7) in (2.5), we move to dimensionless variables, and we introduce a flow
function Y(x, z, t) and ¢(x, z, t) so that v, = (9 z, —o(.dx), w, = (0D/gz, —oD/6x). For the
unknowns ¢, ¢, T we obtain a nonlinear problem

@ % . P ¢
M¢+Ap—ibl~}(;uwm+'tmmw— L %q\
x ox’ du dz

=Kmnmm+u6%KMLﬂﬂnw_ngijmwp+KMLAm»

——Pr—-4 A’l—il—L =K. 7), Z\(D—-égcow. +- %%siuq:v;(h (2.8)

Pz OOz = T b L O with o 402

where A = §¥6x? 4 8%0z%, and operator K acts on arbitrary smooth functions u and v according
to the rule

» __Ou do o vy

K{u, v)y= it
Problem (2.8) is characterized by four dimensionless parameters: Pr = wvjy; R = BgCl(yv); v
a®p2CY (2yv) (¢ is angle determining the vibration direction)}.

3. To problem (2.8) we apply the Lyapunov-—Shmidt method develecped for the problem of
hydrodynamics, and in particular for the Yudovich convection problem [19, 20]. We consider
the stationary linearized problem corresponding to (2.8):

ar . 3

ar (o1 P SN
Atp — R = (-—— COs~ @ I T cosp | = 0,

.9y oaT ar .
A?~—~—_—f) A(D—(Tz‘—cos(p+ﬁ\smq>=(), (3.1)

R Y R R 1)

When there is no vibration (u = 0) it is shown in [20] that in the vicinity of funda-
mental number R, of problem (3.1) there is loss of equilibrium stability and with an accuracy
up to shear along the layer a single stationary 27/a-periodic secondary solution of problem
(2.8) with respect to x arises which depends analytically on parameter & = vR — R,. These
results are based on the simplicity of the fundamental number and invariance of the problem
in relation to some group of transformations (for numerical solutions see [21]).

Nonlinear problem (2.8) is invariant with respect to groups of shears along the layer
Ih(U(x, z)) = U(x + h, z) and transformation of the inversion L(Ulz, 2)) = W(—z, —z), —I(—uz,
—3z), ®{—r, —2)), where Ul(r, z) = (W, 2), Tlx, 2), Oz, z)). Let u, be the fundamental number of prob-
lem (3.1) with fixed Pr, R, ¢, ¢. The simplicity of U, is shown in [10] for ¢ = 0, R = 0,
and in the rest of the cases it was verified numerically. The stationary 2w/oa-periodic solu-
tion of problem (2.8) with respect to x with u = u, + 8,6? is found in the form of a Lyapunov -
Shmidt series

P = E ’llJnSn, T= 2 Tﬂgnv D = 2 (Dnan- (3.2)
==}, =1 n=1

If a solution of (3.2) exists with p > p,, then §; = 1 (soft loss of stability), and if with

M < py, then 8§; = —1 (hard loss of stability). By using the calculation procedure given in

detail in [22] we obtain

a

61130 2 6!021 alpn L dw
1 == (8131—_67. -+ 82ﬁ1 s —8(3)1 - ‘“821:’*1 df&) +0(a"),

223



TABLE 1

® r [T o 8,2 0 Cy
0] 5 2173 | 32262 | 0573 | 0510 | —30,376
10 2123,0 3,2265 0,5698 0,5091 —30,403
15 2124 .¢ 3,2266 0,5685 0,5084 30,411
oo 2128,7 3,2260 0,5661 0,5071 —30,423
10 5 22237 3,2081 --0,3301 0,3072 ;—18,328
10 2229,9 3,2085 --0,3306 0,3086 —18,500
15 2231.9 3,2091 —{),3288 13,3073 —18,453
oo 2236,0 3,2083 —0,3329 0,3116 —18,767
20 5 2597,5 3,1458 —(},(1348 0,0371 —2,237
10 2052 | 34460 | —0.0343 | 00368 - 2192
15 26078 | 311460 | 00362 | 0.0367 20227
oo W30 | 34462 - 00339 | 0,034 - 2,219
30 5 3476,0 3,0013 —0,00667 0,00909 - ,5552
10 3487 8 3,001 —-(0,00663 0,00407 ---4),5569
15 3408 3,0041 —0,00649 0,00890 -~ ,5479
o 3499,7 3,0008 -=-0,10659 (,00005 (15588
0 | 5 5706,9 | 2,667t ~ 000486 | 0.00367 | - -0,2165
10 5730,2 26579 ] - 0,00204 0,00401 (,2379
oo 57537 | 26862 | 000205 | 000405 | 02491
50 5 12758,5 1,9836 ~ (L,0080Y 04,0243 ~-(0,9740
10 12818.8 1,4805 - 0,00827 ,0249 --1,0105
oo 128793 | 1.9792 000833 | 0,0251 — 10354
60 5 407281 1,2992 —-(0,05128 0,2512 3.5609
10 40922,2 1,2476 --0,05120 0.2515 43,3575
0o 41116,9 11,2062 --(0,05098 0,2512 3,1465
70 5 2“752,5 0,7864 --0,1006 1,0314 171.40
10 242727.8 00,7852 - (4,1006 1.0343 170,07
=] 213705,5 (),78/14‘ --(),1006 1,037 168,71
80 5 3452064,1 06,3726 ~-0,0145 0,76714 750,41
10 3467521 ,1 4,372 -0,0194 (176549 T44. 09
oo 3483012,6 0,3719 00,0193 0,7647 737,69
) c'/(bo o2 (']w” O(I)n o r?u?n‘ .
w=|—zcos + gff, —* + E'ﬁl”ﬁ7 — &y — 8"_["17;) + O (&%,
T=—2+ B/C + e, T, + e*plwy, + O (7). (3.3)

The functions Yolz, 2), T4z, 2), Polz, 2), wylz, 2), wylz, 2), wyy(z, z), and also coefficient B; are ex-
pressed by solutions of linear boundary problems which arise in realizing the Lyapunov — Shmidt
method [22].

T 1/ 2 cos oyt
E=— ]/ﬁwsmmzt, I VF?(W’ V1) w;

(0, = ws?/v is dimensionless vibration frequency).

Solution (2.3) is used for calculating the intensity of transverse heat transfer (average
Nusselt number <Nu>) and average kinetic energy ({||v|[?)) which in the vicinity of u, are cal-
culated by the equations

2m/o
o oT

(Nup = — 5~ j 5 de =1+ Cig; + O (e%); (3.4)
i

7===-1/2

27/0, /e 0,5

. Ao, an T, 2 « COS> @ s - .
<”th>=2§§ j‘ j y ‘u—»— l/ Fﬁwsmmzt dzd,ljdt-“—‘%(1—1—8])—{—0281—{-0(83) (3.5)
¢ —0.5
(2, = ¥y, = |y — Wel/u, is relative supercriticality). Expressions for C, and G, are given in

izes the contribution to kinetic energy of the rapid component (g, = VZ2u/Pr w, sinw,t) of
the main solution, and the second characterizes the contribution of addition terms (v, & =
— V 2u/Prw, sinw,t). of the secondary flow velocity vector.

4, We give the main results of calculating with low gravitation (g + 0) and pure we::Lght—
lessness (g = 0). It is noted that the assertion of high-frequency vibration with g # 0 is

[22] and C, = C, = 0 if u < p,, &8, =1 and if u > p,, 8; =—1. The first term in (3.5) character-
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TABLE 2
® i . 8,87 21 Ca
6,26 2169,8 3,2192 0,19834 180,74 —10860
6,28 2170,1 3,2191 —0,15141 137,98 —8241,0
58,7 34 583 1,3743 —0,90167.10-% 41273 10,634
58,75 34 814 1,3712 0,11503.10-1 5,281 155,09
59,2 36 934 1,3439 0,19987.10-¢ 0,09407 0,58892
59,4 37928 | 14,3318 | —0,10243.10-¢ | 0,04879 0,37947

described conveniently by parameter r == v/ﬁﬂ§§::abfiﬁibfigﬁ) which does not depend on tem-
perature and it characterizes the ratio of vibration and gravitation forces. Thus, it ap-
pears [1, 16, 18] that in the case of vertical oscillations with r > 0.023 gravitation con-
vection cannot arise with any temperature gradient.

In this work with fixed values of parameters r, ¢, Pr we calculate u,(a,) - min u(w),
[¢4

amplitudes 8; of secondary solutions, and also C, and C, in (3.4) and (3.5) for <Nu> and
the averaged square of the velocity norm (||v|]*) are calculated. It is noted that for flow
function Vy,{x, z) the normalization ¢,(0, 0) = 4 is taken.

From the results given in Table 1 it follows that a value of vibration parameter r,
(r* % 10) exists such that with r > ry, all of the movement characteristics calculated (g2,
(Nu), {]|v|[?)) correspond to the case of pure weightlessness. This makes it possible to select

a vibration velocity with which terrestial modeling of weightlessness conditions is possible.

Presented in Fig. 1 is the dependence of the square of amplitude §,87(¢p) for Pr = 1 and
o = a,. With vibration directions 0<C ¢ <C 6.26° and 58.75° < ¢ <X 59.2° secondary flow exists
with supercritical branching p (8§, = 1), and with 6.28°<< ¢ < 58.7° and ¢ > 59.4° hranching

is subcritical (§; = =1); in the range 27° <{ ¢ < H' secondary flow velocity is at a minimum
(g2 = 107%).

Shown in Fig. 2 is the dependence of the square of amplitude on Pr for some values of
¢(0; 5; 8; 10°). With vibration directions close to longitudinal (@ = 0) there is a region of
supercritical branching which decreases with an incresae in ¢; with ¢ > 8§  branching is only
subcritical. In addition, calculations showed that starting from Pr = 50 amplitude B, does
not depend on Pr.

According to (3.4) and (3.5) in the small vicinity of u,, <Nu>, and (||v||*) depend lin-
early on the relative supercriticality of & -- [u — p,l/n,. It can be seen from Fig. 3a that
heat transfer increases with an increase in supercriticality (C, > 0), and the rate of growth
of C, depends markedly on vibration direction.
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Presented in Fig. 3b are curves for C,(g). With ¢ = 58.3° coefficient C, changes sign,

i.e., occurrence of secondary flow may reduce kinetic energy (0 <o < 58.2°), but it may also
increase (p > 58.4°) which apparently makes it possible to control convection by means of a
specially selected vibration direction.

Given in Table 2 are the results of calculations in the vicinity of values of , with

which there is a change in the nature of branching: with 6.26° << ¢ < 6.28° and 58.7° < 9o <
58.75° there is a strong increase in 8%, C,, and C,; in the section 59.2° T << 59.7° ampli-
tude B} revert to zero, and C, and C, change weakly.

10.

11.

12,

13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

226

The authors thank V. I. Yudovich for constant attention to the work.

LITERATURE CITED

S. M. Zen'kovskaya and I. B. Simonenko, "Effects of high-frequency vibration on the oc-
currence of convection,”" Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1966).

S. M. Zen'kovskaya, "Effect of vibration on the occurrence of convection," Dep. VINITI
11.07.78, No. 2437-78, Moscow (1978).

5. M. Zen'kovskaya, "Study of convection in a layer of liquid with presence of vibra-

tion forces," Izd. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1968).

I. B. Simonenko, "Substantiation of the averaging method for abstract parabolic equa-

tions," Mat. Sb., 81(123), No. 1 (1970).

I. B. Simonenko, "Substantiation of the averaging method for convection problems in a

field of rapidly oscillating forces and for other parabolic equations," Mat. Sb., 87(129),

No. 2 (1972).

S. M. Zen'kovskaya, "Effect of vibration on convective instability,” in: Numerical Meth-

?ds o§ Viscous Liquid Dynamics [in Russian], ITPM, Sib. Otd. Akad. Nauk SSSR, Novosibirsk
1979).

G. Z. Gershuni and E. M. Zhukhovitskii, "Free thermal convection in a vibration field

under weightlessness conditions,” Dokl. Akad. Nauk SSSR, 249, No. 3 (1979).

G. Z. Gershuni and E. M. Zhukhovitskii, "Convective instability of a liquid in a vibra-

tion field," Izd. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1981).

S. M. Zen'kovskaya, "Effect of vibration on the occurrence of convection in a binary

mixture," Dep. VINITI 10.04.81, No. 1570-81, Moscow (1981).

S. M. Zen'kovskaya and V. V. Kurinnoi, "Free convection in a layer of liquid with an os-

cillation gravitational field," Dep. VINITI 7.07.83, No. 4095-83, Moscow (1983).

L. Kh. Belen'kaya and V. I. Yudovich, "Numerical study of the occurrence of convection

in a binary mixture under the action of periodic external forces with respect to time,"

Dep. VINITI 8.01.81, No. 4-81, Moscow (1981).

A. I. Rakhmanov, "Convection in an oscillating layer of viscous liquid," Preprint, Inst.

Prikl. Mat., Akad. Nauk SSSR, No. 114, Moscow (1983).

Yu. S. Yurkov, "Vibration thermal convection in a square cavity under weightlessness
(finite frequencies)," in: Convective Flows [in Russian], Perm. Ped. Inst., Perm (1981).

S. M. Zen'kovskaya, "Convection in an oscillating layer of liquid with two free surfaces,’

Izv. Sev.-Kavk. Nacuh. Tsentr. Vyssh. Shkola Estestv. Nauki, No. 4 (1987).

G. Z. Gershuni and E. M. Zhukovitskii, "Vibration thermal convection in weightnessless,"

in: Hydromechanics and Transfer Processes in Weightlessness [in Russian], Ural Science
Center of the Academy of Sciences of the USSR, Sverdlovsk (1983).

S. M. Zen'kovskaya and I. B. Simonenko, "The averaging method for problems of convection
in a field of rapdily oscillating forces and for other parabolic equatioms,” in: 4th
Int. Conf. on Boundary and Internal Layers: Proc. ITPM Sib. Otd. Akad. Nauk S8SR, Novo-
sibirsk (1966).

S. M. Zen'kovskaya (Zen'kovskaja) and I. B. Simonenko, "Application of the averaging method
for the solution of the problem of convection in a field of rapidly oscillating forces and for
the solution of other parabolic equations,”" Proc. Int. Conf. on Boundary and Interior
Layers: Computational and Asymptotic Methods, Boole Press, Dublin (1986).

M. P. Zavarynkin, S. V. Zorin, and G. F. Putin, "Thermoconvective instability in a vi-
bration field," Dokl. Akad. Nauk SSSR, 299, No. 2 (1988).

V. I. Yudovich, "Occurrence of convection," Prikl. Mat. Mekh., 30, No. 6 (1966).

V. I. Yudovich, "Free convection and branching," Prikl. Mat. Mekh., 31, No. 1 (1967).

G. K. Ter-Grogor'yants and N. E. Karamanova, '"Calculation of plane stationary convec-
tion,'" Izv. Sev.-Kavk. Nauch. Tsentr. Vyssh. Shkola Estestv. Nauki, No. 3 (1977).

S. M. Zenkovskaya and S. N. Ovchinnikova, "Calculation of secondary flows in the problem
of thermal vibration convection in a layer," Dep. VINITI 19.05.87, No. 4579-V87, Moscow (1987).



